Мощное Зарядное Устройство Для Смартфонов На MC34063A. Импульсные регуляторы напряжения MC34063A, MC33063A, NCV33063A Микросхема mc34063 схема включения

Основные технические характеристики MC34063

  • Широкий диапазон значений входных напряжений: от 3 В до 40 В;
  • Высокий выходной импульсный ток: до 1,5 А;
  • Регулируемое выходное напряжение;
  • Частота преобразователя до 100 кГц;
  • Точность внутреннего источника опорного напряжения: 2%;
  • Ограничение тока короткого замыкания;
  • Низкое потребление в спящем режиме.
Структура схемы:
  1. Источник опорного напряжения 1,25 В;
  2. Компаратор, сравнивающий опорное напряжение и входной сигнал с входа 5;
  3. Генератор импульсов сбрасывающий RS-триггер;
  4. Элемент И объединяющий сигналы с компаратора и генератора;
  5. RS-триггер устраняющий высокочастотные переключения выходных транзисторов;
  6. Транзистор драйвера VT2, в схеме эмиттерного повторителя, для усиления тока;
  7. Выходной транзистор VT1, обеспечивает ток до 1,5А.
Генератор импульсов постоянно сбрасывает RS-триггер, если напряжение на входе микросхемы 5 – низкое, то компаратор выдает сигнал на вход S сигнал устанавливающий триггер и соответственно включающий транзисторы VT2 и VT1. Чем быстрее придет сигнал на вход S тем больше времени транзистор будет находиться в открытом состоянии и тем больше энергии будет передано со входа на выход микросхемы. А если напряжение на входе 5 поднять выше 1,25 В, то триггер вообще не будет устанавливаться. И энергия не будет передаваться на выход микросхемы.

MC34063 повышающий преобразователь

Например я данную микросхему использовал чтобы получить 12 В питание интерфейсного модуля от ноутбучного порта USB (5 В), таким образом интерфейсный модуль работал когда работал ноутбук ему не нужен был свой источник бесперебойного питания.
Также имеет смысл использовать микросхему для питания контакторов, которым нужно более высокое напряжение, чем другим частям схемы.
Хотя MC34063 выпускается давно, но возможность работы от 3 В, позволяет её использовать в стабилизаторах напряжения питающихся от литиевых аккумуляторов.
Рассмотрим пример повышающего преобразователя из документации. Эта схема рассчитана на входное напряжение 12 В, выходное — 28 В при токе 175мА.
  • C1 – 100 мкФ 25 В;
  • C2 – 1500 пФ;
  • C3 – 330 мкФ 50 В;
  • DA1 – MC34063A;
  • L1 – 180 мкГн;
  • R1 – 0,22 Ом;
  • R2 – 180 Ом;
  • R3 – 2,2 кОм;
  • R4 – 47 кОм;
  • VD1 – 1N5819.
В данной схеме ограничение входного тока задается резистором R1, выходное напряжение определяется соотношением резистором R4 и R3.

Понижающий преобразователь на МС34063

Понизить напряжение значительно проще – существует большое количество компенсационных стабилизаторов не требующих катушек индуктивности, требующих меньшего количества внешних элементов, но и для импульсного преобразователя находиться работа когда выходное напряжение в несколько раз меньше входного, либо просто важен КПД преобразования.
В технической документации приводиться пример схемы с входным напряжение 25 В и выходным 5 В при токе 500мА.

  • C1 – 100 мкФ 50 В;
  • C2 – 1500 пФ;
  • C3 – 470 мкФ 10 В;
  • DA1 – MC34063A;
  • L1 – 220 мкГн;
  • R1 – 0,33 Ом;
  • R2 – 1,3 кОм;
  • R3 – 3,9 кОм;
  • VD1 – 1N5819.
Данный преобразователь можно использовать для питания USB устройств. Кстати можно повысить ток отдаваемый в нагрузку, для этого потребуется увеличить емкости конденсаторов C1 и C3, уменьшить индуктивность L1 и сопротивление R1.

МС34063 схема инвертирующего преобразователя

Третья схема используется реже двух первых, но не менее актуальна. Для точного измерения напряжений или усиления аудио сигналов часто требуется двуполярное питание, и МС34063 может помочь в получении отрицательных напряжений.
В документации приводиться схема позволяющая преобразовать напряжение 4,5 .. 6.0 В в отрицательное напряжение -12 В с током 100 мА.

  • C1 – 100 мкФ 10 В;
  • C2 – 1500 пФ;
  • C3 – 1000 мкФ 16 В;
  • DA1 – MC34063A;
  • L1 – 88 мкГн;
  • R1 – 0,24 Ом;
  • R2 – 8,2 кОм;
  • R3 – 953 Ом;
  • VD1 – 1N5819.
Обратите внимание, что в данной схеме сумма входного и выходного напряжения не должна превышать 40 В.

Аналоги микросхемы MC34063

Если MC34063 предназначена для коммерческого применении и имеет диапазон рабочих температур 0 .. 70°C, то её полный аналог MC33063 может работать в коммерческом диапазоне -40 .. 85°C.
Несколько производителей выпускают MC34063, другие производители микросхем выпускают полные аналоги: AP34063, KS34063. Даже отечественная промышленность выпускала полный аналог К1156ЕУ5 , и хотя эту микросхему купить сейчас большая проблема, но вот можно найти много схем методик расчетов именно на К1156ЕУ5, которые применимы к MC34063.
Если необходимо разработать новое устройство и какжется MC34063 подходит как нельзя лучше, то соит обратить внимание на более современные аналоги, например: NCP3063 .

Могие из нас, вероятно, сталкивались с проблемой питания 9-вольтовых мультиметров, когда символ «батарейки» в левом верхнем углу экрана появляется в самый неподходящий момент и прибор начинает нагло «врать». Вот и я после того как надоело менять «Кроны», да и в продаже не всегда были раньше, стал запитывать мультиметр от стационарного блока питания и однажды отправил к праотцам свой мультиметр, подав на него по ошибке питание 27 вольт. Вот тогда и стал задумываться об «альтернативном источнике энергии». Методом проб и ошибок была найдена схема. Её мне подсказал друг по форуму «radiomaster.com.ua» Сергей Гуреев, за что ему респект и «уважуха».

В данной статье предлагаю вниманию радиолюбителей схему преобразователя напряжения для питания мультиметра на довольно распространённой ИМС МС34063А. Схему взял из «даташита» микросхемы. Микросхема работает как на повышение напряжения так и на понижение. Входное напряжение от 3 до 40 вольт. Выходной ток до 1.5 ампер. Ещё существует так называемый калькулятор

для расчёта номиналов радиоэлементов «обвязки» и типа включения её от назначения. Следует отметить, что данный преобразователь выгодно отличается от иных устройств, работающих на ту же задачу. В нём нет взаимодействия с сетью 220 вольт, следовательно, исключается риск поражения пользователя электрическим током. Налицо явная простота – в данной схеме присутствует всего девять деталей. Наличие внутреннего генератора, частота преобразования которого, задаётся внешними элементами, гарантирует стабильное напряжение на выходе устройства. Приведенные параметры, относительная дешевизна микросхемы, а также простота включения и минимум деталей делают её привлекательной для повторения. Для сравнения, цена на элемент питания «Крона» у нас в Донецке около 2$, цена на ИМС МС34063А 0.5$. Это при том, что «Кроны» вы периодически меняете, а они, как правило не дешевеют.

Конструктивно преобразователь оформлен навесным монтажом, но эстеты могут выполнить в виде печатной платы в SMD формате. Микросхему я применил в корпусе DIP8 – для неё есть панелька и удобно вокруг вести монтаж остальных элементов. Входное питание беру с литиевого аккумулятора от мобильного телефона. В торце корпуса мультиметра выполнен разъём для подключения зарядного устройства, в моём случае от того же мобильного телефона. Какой либо настройки схема не требует – всё работает сразу при включении питания. Подключать преобразователь следует в разрыв дорожки, идущей от кнопки включения питания к остальной части схемы.

Дорабатывался мультиметр DT – 9502, у него подача питания организована кнопкой, если будут дорабатываться приборы с «галетником», то там уже по ситуации. Ток потребления составляет 20 мА, а в режиме измерения ёмкости на пределе «200 мкФ» – 60 мА. Мультиметры этого класса имеют таймер на отключение по времени работы, поэтому при питании в 3.8 – 4.2 вольта время работы будет сокращаться вдвое. Чтобы этого не произошло надо подпаять параллельно конденсатору таймера конденсатор ёмкостью 100 мкФ со стороны дорожек. Также можно встроить боковую подсветку экрана – очень удобная штука, не раз меня выручала. Но это уже совсем другая тема.

С уважением, Танго.

В магазинах можно найти достаточно много зарядных устройств, работающих от сети 220В или от бортовой сети автомобиля (12В). В тоже время, иногда бывают ситуации, когда под рукой нет ни розетки, ни автомобиля, например, где-нибудь в походе. В этом случае для подзарядки различных устройств, таких как КПК или сотовые телефоны можно использовать обычные батарейки.

Представленная ниже схема разрабатывалась как зарядное устройство для КПК (5В; 0,5А), работающее как от аккумулятора автомобиля, так и от батареек, но может быть легко переделана на другое выходное напряжение и использоваться для зарядки от батареек или аккумуляторов любых других устройств.

Данная схема позволяет при входном напряжении +4..+14В получить на выходе стабильное напряжение +5В и ток нагрузки до 0,5А.

В качестве топологии преобразователя была выбрана топология SEPIC, поскольку она позволяет как повышать, так и понижать входное напряжение и, кроме того, обеспечивает сравнительно небольшие пульсации входного тока, что особенно важно в случае батарейного питания.

За основу преобразователя была взята хорошо известная микросхема MC34063.

В качестве силового ключа используется n-канальный MOSFET как наиболее экономичное с точки зрения КПД решение. У этих транзисторов минимальное сопротивление в открытом состоянии и как следствие — минимальный нагрев (минимальная рассеиваемая мощность).

Схема :

Для управления полевым транзистором используется узел на элементах T2, R3, D2. Он работает следующим образом: при включении MOSFET затвор заряжается через диод, биполярный транзистор при этом закрыт, а при отключении MOSFET биполярный транзистор открывается и затвор разряжается через него. Этот узел предназначен для обеспечения максимальной крутизны фронтов открытия и закрытия полевого транзистора.

L1, L2 — катушки индуктивности по 80 мкГн (56 витков провода ПЭТВ2, диаметром 0,315 мм, намотанных на гантельке (рис. справа), диаметром 6 мм и высотой 8 мм).

С1 — входной фильтр, электролит 100 мкФ/16В

С2 — керамика на 10 мкФ (можно взять с плат сломанных винчестеров, там обычно стоят толстые керамические кондёры на 10 мкФ и на 22 мкФ)

С3 — выходной фильтр, электролит 470 мкФ/16В

С4 — времязадающий конденсатор, керамика 270 пФ

D1, D2 — диоды Шоттки1N5817 (с материнки)

R1, R2 — делитель напряжения. Для выхода 5В резисторы имеют номиналы 3 кОм и 1 кОм, соответственно.

R3 — резистор 4,7 кОм

T1 — силовой транзистор MOSFET, 60N03S (с материнки). Можно взять любой MOSFET с логическим уровнем управления затвором.

T2 — pnp транзистор. Подойдут, например, наш КТ361, буржуйский 2PA733 или подобные.

Готовый девайс .

Понижающий преобразователь на MC34063 для мобильного телефона

Подзаряжать аккумулятор мобильного телефона приходится в среднем один раз в неделю. Если Вы читаете наши обзоры мобильных телефонов , то, возможно, уже выбрали для себя экономичную модель , которая держит заряд по нескольку недель.

Со временем свойства аккумулятора мобильного телефона ухудшаются, и заряжать его приходится всё чаще. Особенно это ощущается на старых телефонах, которые жалко выбросить, но покупать новый аккумулятор нецелесообразно. Кроме того, у старых телефонов часто выходит из строя контроллер заряда и заряжать их приходится только при помощи лягушки .

Одно из решений для подобных телефонов - питание от ёмкого свинцового гелевого аккумулятора (например, восстановленного от UPS). Разумеется, телефон с таким аккумулятором уже не является мобильным. Он может лежать на полочке и использоваться по мере надобности.

Задача преобразователя - понизить напряжение аккумулятора (11-12 вольт) до напряжения, необходимого для питания телефона - 3.6 вольт. Преобразователь должен обладать высоким КПД, чтобы эффективно использовать энергию, запасённую в аккумуляторе. Линейные стабилизаторы здесь нежелательны по той причине, что часть энергии переводят в тепло.

Вашему вниманию предлагается импульсный преобразователь, который имеет миниатюрные размеры (плата - 3x3 см, а при использовании smd-компонентов - ещё меньше) и не нагреватся совсем.


В преобразователе используется известная микросхема MC34063. Параметры стабилизатора можно легко рассчитать на требуемые значения выходного напряжения и тока. Поэтому на основе этого преобразователя легко построить, например, автомобильную зарядку для телефона или КПК.

Схема стабилизатора - стандартная step-down (понижающая) из даташита на MC34063:


Для удобства приводим онлайн-калькулятор параметров для данной схемы. Задав нужные значения напряжений и тока, Вы легко посчитаете номиналы деталей.

Онлайн-калькулятор MC34063
Здесь будет результат вычисления

Обратите внимание, что чем больше частота преобразования, тем меньшие значения индуктивности дросселя и ёмкости конденсатора потребуются. Параметр I L - значение тока, на который должен быть рассчитан дроссель, а L - минимальное значение его индуктивности (т.е меньше нельзя, можно больше).

Печатная плата может быть, например, такой, как на рисунке. В ней возможна как установка рассчитанных резисторов для получения конкретного напряжения, так и установка подстроечного резистора для регулировки. Конденсатор на входе преобразователя - в SMD исполнении, устанавливается со стороны печатных дорожек. Конденсатор на выходе может быть как SMD, так и в выводном исполнении. Необходимо, чтобы он был Low ESR, т.к. частота преобразователя высокая. Обратите внимание, что у электролитических конденсаторов в SMD исполнении полоса на корпусе означает плюсовой вывод, а не минусовой.

Собранный преобразователь подключается выходом непосредственно к клеммам аккумулятора мобильного телефона, а входом - к гелевому аккумулятору. Зарядки такого аккумулятора хватит на длительный срок работы телефона.


Данную схему также можно использовать и для иных целей, например, для питания светодиодов и т.п.

Микросхема представляет собой универсальный импульсный преобразователь, на котором можно реализовывать понижающие, повышающие и инвертирующие преобразователи с максимальным внутренним током до 1,5А.

Ниже к вашему вниманию представлена схема понижающего преобразователя с выходным напряжением 5V и током 500mA.

Схема преобразователя MC34063A

Набор деталей

Микросхема: MC34063A
Конденсаторы электролитические: C2 = 1000мФ/10В; C3 = 100мФ/25В
Конденсаторы металлопленочные: C1 = 431пФ; C4 =0.1мФ
Резисторы: R1 = 0.3 ом; R2 = 1к; R3 = 3к
Диод: D1 = 1N5819
Дроссель: L1 = 220uH

C1 – емкость частотнозадающего конденсатора преобразователя.
R1 – резистор который отключит микросхему при превышении тока.
C2 – конденсатор фильтра. Чем он больше тем меньше пульсаций, должен быть LOW ESR типа.
R1, R2 – делитель напряжения который задает выходное напряжение.
D1 – диод должен быть сверхбыстрым (ultrafast) или диодом шоттки с допустимым обратным напряжение не менее чем в 2 раза превышающим выходное.
Напряжение питания микросхемы 9 - 15 вольт, а входной ток не должен превышать 1.5А

Печатная плата MC34063A

Два варианта печатнных плат



Здесь можно скачать универсальный калькулятор
Загрузка...
Top